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The Construction of Preconditioners 
for Elliptic Problems by Substructuring. II 

By J. H. Bramble*, J. E. Pasciak* and A. H. Schatz* 

Abstract. We give a method for constructing preconditioners for the discrete systems 
arising in the approximation of solutions of elliptic boundary value problems. These 
preconditioners are based on domain decomposition techniques and lead to algorithms 
which are well suited for parallel computing environments. The method presented in 
this paper leads to a preconditioned system with condition number proportional to d/h 
where d is the subdomain size and h is the mesh size. These techniques are applied 
to singularly perturbed problems and problems in three dimensions. The results of 
numerical experiments illustrating the performance of the method on problems in two 
and three dimensions are given. 

1. Introduction. The aim of this series of papers is to propose and analyze 
methods for efficiently solving the equations resulting from finite element discretiza- 
tions of second-order elliptic boundary value problems on general domains in Rf2 
and R3. In particular we shall be concerned with constructing easily invertible and 
"effective" preconditioners for the resulting system of discrete equations which can 
be used in a preconditioned iterative algorithm to achieve a rapid solution method. 
The methods to be presented are well suited to parallel computing architectures. 

For N = 2 or N = 3, let Q be a bounded domain in R N with a piecewise smooth 
boundary (9Q. As a model problem for a second-order uniformly elliptic equation 
we shall consider the Dirichlet problem 

(1.1) Lu = f in Q, 

u=O on(Q, 

where 

(1.2) Lv =-E , aij, )- + av 
ij1=1 

with aij symmetric, uniformly positive definite and bounded above on Q. For ease 
of exposition, we assume that either a- 0 or a is bounded above and below by 
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positive constants. The generalized Dirichlet form is given by 

(1.3) A(v,q5)= EJ aij - Xd + J avq dx, 

which is defined for all v and 0 in the Sobolev space H1 (Q) (the space of distribu- 
tions with square-integrable first derivatives). The L2 (Q) inner product is denoted 

(V, 0) =f v dx. 

The subspace H1 (Q) is the completion of the smooth functions with support in Q 
with respect to the norm in H' (Q). The weak formulation of the problem defined 
by (1.1) is: Find u E Ho'(Q) such that 

(1.4) A(u, 0) = (f, 0)n 

for all q E Ho' (Q). This leads immediately to the standard Galerkin approximation. 
Let Sh (Q) be a finite-dimensional subspace of Ho' (a). The Galerkin approximation 
is defined as the solution of the following problem: Find U E Sh? () such that 

(1.5) A(U, 4) = (fi%4) 

for all 4 E Sho(Q). 
We shall also be interested in solving (1.5) when the form A of (1.3) corresponds 

to the singularly perturbed operator 

(1.6) Lv = v + eLv, 

where L was defined by (1.2) and E is a possibly small constant which in some 
applications depends upon h. The A form corresponding to (1.6) is then given by 

(1.7) A(v) )E= {E J aij - dx + av5 dX + (v, 0)Q. 

Singularly perturbed problems arise, for example, in time-stepping methods for the 
numerical approximation of parabolic problems. 

Now it is easy to see that if E is bounded away from zero, then any preconditioner 
for (1.5) gives a preconditioner for (1.7). Furthermore, if E is of order h2, then the 
quadratic form A(v, v) restricted to the subspace Sh?(Q) is equivalent to (v, v)n and 
no preconditioner is necessary. We shall provide a preconditioner for (1.7) which 
has conditioning properties similar to those of the preconditioner developed for 
(1.5) independent of E. 

As illustrated in Part 1 [3], the preconditioning problem can be reduced to the 
problem of defining an appropriate form B on Sh? (Q) x Sh? (Q) satisfying the following 
criterion. Firstly, the problem of finding W E Sh (Q), given g, satisfying 

(1.8) B(W, 4) = (g, 4)n for all 4 E Sho (Q) 

should be easier to obtain than the solution of (1.5). Secondly, the forms B and 
A should be comparable in the sense that there are positive constants A0 and 
A1 satisfying 

(1.9) AoB(VV) < A(VV) < A1B(VV) for all V E Sho(Q) 

with A1/Ao "not too large." 
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It should be noted that it is generally not possible to develop an effective precon- 
ditioner for (1.7) directly from a preconditioner for (1.5). If B is a preconditioner 
for (1.5), then a natural choice of a preconditioner for (1.7) would be the form given 
by 

(1.10) eB(u, v) + (u, v). 

Unfortunately, the problem corresponding to (1.8) using the form (1.10) cannot, in 
general, be efficiently solved. 

In this paper we shall develop a particularly simple method for defining pre- 
conditioners by domain decomposition. As is typical with domain decomposition 
techniques, the given domain Q is broken into a number of subdomains {oi}. Our 
preconditioner is defined so that the calculation of the solution of (1.8) involves 
solving in parallel related Galerkin equations on the subregions and some inter- 
connecting equations. For the method to be developed, the number of unknowns 
involved in the interconnecting equations will be at most equal to the number of 
subdomains. 

Other papers providing iterative methods involving domain decomposition for 
the solution of elliptic problems have appeared in the literature [1]-[8]. The earliest 
papers involved splitting the domain into subdomains without interior corner points 
[1], [2], [4]-[6], [8]. These methods became inefficient when many long thin subdo- 
mains were used. Consequently, it became natural to develop decomposition meth- 
ods which use quasi-uniform subregions. In Part I, we defined and analyzed such 
a method for two-dimensional problems. That method was shown to have a condi- 
tion number for the preconditioned system which was bounded by c(1 + log(d/h))2 
(here d and h correspond, respectively, to the diameter of the subregions and the 
discretization size of the mesh). 

The preconditioner defined and analyzed in this paper has the following advan- 
tages over that defined in Part I. Firstly, it is somewhat simpler, both conceptually 
and computationally. Secondly, it extends in a straightforward manner to three- 
dimensional problems. Thirdly, it applies to singularly perturbed systems without 
deterioration in the iterative convergence rates. 

On the negative side, the preconditioner defined in this paper shows a somewhat 
faster asymptotic growth of the condition number for the preconditioned system 
than that of the Part I preconditioner. We will show that the condition number for 
the new method is bounded by cd/h in contrast to the (1 + log(d/h))2 growth for 
the preconditioned system of Part I. This is a reasonable growth for many rather 
large three-dimensional problems when d and h are judiciously chosen. 

An important aspect of this paper involves the introduction of certain con- 
stants or 'average values' associated with discrete functions on the subdomains 
as part of the definition of the preconditioner B. A technique for computing 
these average values is presented. A future part in this series of papers will pro- 
vide a three-dimensional preconditioner employing this averaging technique with a 
(1 + log(d/h))2 condition number growth for the preconditioned system. 

The outline of the remainder of the paper is as follows. In Section 2 we describe 
the domain decomposition preconditioners and prove estimates for the growth of 
the condition numbers for the preconditioned system. In Section 3 we show how to 
compute the solution to (1.8). Numerical examples of the preconditioner applied 
to problems in two and three dimensions are given in Section 4. 
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We shall also let c and C, with or without subscript, denote generic positive 
constants. These constants will always be independent of the mesh and subdomain 
parameters h and d (see Section 2). 

2. The Construction and Analysis of the Preconditioner. We will de- 
scribe the preconditioner in this section and prove an estimate for the condition 
number of the preconditioned system. We start by giving some hypothesis on the 
domain and subdomain partitioning and the associated finite element subspaces. 

For the sake of simplicity of exposition we shall proceed with the discussion only 
for the special case of polyhedral domains and piecewise linear approximations. 
Many generalities are possible and will be discussed in later papers. 

More precisely we shall begin with the following assumptions with regard to Q. 

(A.1) Q is a polyhedral domain in R2 or R3, which for each h, 0 < h < 1, a 
parameter, has been given a triangulation Qh of maximal size h. That is, 

,= J r14, where each Tj is a simplex which is contained in a ball of 
radius h. 

Any union of simplexes of Qh will be called a mesh subdomain, and the vertices 
of the simplexes in Qh will be denoted by xi ordered in some fashion. We shall 
partition the domain Q into a number of mesh subdomains {Qk }. 

(A.2) We assume that the triangulation is quasi-uniform near the boundaries 
of the subdomains, i.e., if rh E Qh is a simplex such that 1 h n aQk : 0, 
then rh contains a ball of radius ch where c is independent of h. 

(A.3) The Qk are quasi-uniform of size d. This means there exists a positive 
constant c1 which is independent of d and h such that each Qk contains 
a ball of radius c1d and is contained in a ball of radius d. The number of 
domains nd is proportional to dN. 

(A.4) Each Qk is uniformly star-shaped with respect to a point. This means 
that for each Qk there is a point 5xk and a constant c2 > 0, independent 
of d and h, such that (x - Xk) rn(x) > c2d for all x E aQk. Here, n(x) 
denotes the outward unit normal to a(Qk at x. 

(A.5) Let Q2k be the scaled domain defined by 

Qk {xldx E Qk}. 

We assume that Q2k has a Lipschitz continuous boundary with Lipschitz 
constants which are independent of d. 

Remark 2.1. Assumption (A.5) is a weak regularity hypothesis for the boundary 
Of Qk. It guarantees that a Poincare inequality of the form 

(2.1) IIVII12 < Cd 2Dk(VV) 

holds for functions V with zero mean value on Qk with a constant C independent 
of d and k. Here Dk(*, ) denotes the Dirichlet inner product on Qk. 

Remark 2.2. We note that Assumption (A.4) implies the inequality 

(2.2) IUI12k < c{d1 IIUI2k + dDk(U, u)} 

For each h, let Sh (Q) be the space of continuous piecewise linear functions defined 
relative to the triangulation Qh and Sh?(Q) be the subspace of Sh(Q) consisting of 
those functions which vanish on 9Q. Sho(Qk) will denote the subspace of Sh?(Q) of 
functions whose supports are contained in Qk (in particular, they vanish on aFQk 
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and outside Qk). Let F denote Uk aFQk and let Sh(F) denote the functions which 
are restrictions to F of functions in SO(7). 

We shall need some additional notation. The L2(aQk) inner product shall be 
denoted 

(V, w)k = L vw ds 

with corresponding norm 

IVIk = (VV)aQk 

where ds is an element of arc length or surface area of a(Qk. The analogous discrete 
inner product is given by 

(V W) kh = h v (xi) w (xi) 
a~~~kS 8h 

with corresponding discrete norm 

IVQkh = (VV)akh 

It follows from (A.2) that 

(2.3) C IVI&Qk ? IVIaQk,h ? C IVI&Qk 

holds for functions v E Sh (). In addition, we have the following lemma. 

LEMMA 2. 1. If v E Sh,(Q) and vanishes at all interior nodes of Qk then. 

(2.4) c1h IV12kh 
< 

IIVI12 < Clh IV12Qk,h 

and 

(2.5) c1h1 IVI' 2kV h < Dk(v,v) < C h-' IVI12k h- 

We next construct the bilinear form B corresponding to our preconditioner. We 
first introduce another form A(., ) on Sh(Q). If A is given by (1.3), we define 

Nf 
Ak (V, $ => acj -y-dx? J akvq dx. 

i~j= Jk axi axj Jk 

Alternatively, if A is given by (1.7) then we define 

(2.6) Ak(V, 5 e{ 2 aiCjy - dx ? 1 a avq5 dx} ? 12 bvq dx. 
i Jk tjaiaj Jk} Jk 

We then define 

(2.7) A(U, V) = EAk(U.V). 
k 

Here ak = 0 if a = 0 or ak > c > 0. Furthermore bk > c > 0. These functions 
are piecewise smooth (possibly discontinuous) for each k. Finally, ak (x) for i, j = 

1, ... , N is a piecewise smooth (possibly discontinuous) uniformly positive definite 
matrix. The reason for the form of A was discussed in Part I ([3], Section 4). 
Basically, it allows for greater flexibility in the definition of the preconditioner and, 
for example, the use of constant coefficient fast solvers (even when L has variable 
coefficients). 
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We note that 

(2.8) CoA(U,U) < A(U,U) < C1A(U,U) for all U E Sh(Q) 

holds. Thus, the problem of finding a preconditioner for A is the same as finding 
one for A. 

We next decompose functions in Sho(Q) as follows: Write W = Wp + WH where 
WP E Sh((Qj) E ... ED Sho(Frt) and Wp restricted to Qk satisfies 

Ak(WP, J) = Ak(W, J) for all 'J E Sh(F k) 

for each k. Notice that Wp is determined on Qk by the values of W on Qk and 
that 

(2.9) Ak(WH, a1) = 0 for all 'J E Sh( k). 

Thus on each Qk, W is decomposed into a function Wp which vanishes on OFQk and 
a function WH which satisfies the above homogeneous equation and has the same 
boundary values as W on OFQk. We shall refer to such a function WH as "discrete 
Ak-harmonic". The subspace of discrete Ak-harmonic functions shall be denoted 
by H(Qk). 

We note that the above decomposition is orthogonal in the A inner product and 
hence 

(2.10) A(W, W) = A(Wp, Wp) + A(WH, WH). 

We shall define the preconditioning form B by replacing the A(WH, WH) term in 
(2.10). 

Note that a discrete Ak-harmonic function is completely determined by its values 
on the boundary. Accordingly, the form A(WH, WH) can be replaced by a form 
which only involves the boundary values. The particular choice of the boundary 
form will depend on whether we are considering (1.3) or the singularly perturbed 
case (1.7). 

Remark 2.3. It seems reasonable to consider replacing the A(WH, WH) by the 
identity (or a weighted identity) on the subdomain boundary. This works rea- 
sonably well if A is given by (1.3), d is not too large, and the coefficients of A 
are smooth. The replacement forms to be described work better in more general 
situations. 

We first consider the case when A is given by (1.3). To understand the motivation 
for the form to be defined, it is instructive to consider the case when a = 0. We 
would like to replace the form Ak (restricted to discrete harmonic functions) and 
define the replacement for A(WH, WH) by summation. Note that if ak = 0 then Ak 
is indefinite, and so its replacement should also be indefinite. Let ak be a constant 
which will be chosen later; then 

(2.11) Ak(WH, WH) = Ak(WH - ak, WH - ak) < Ak(W, W), 

where W E Sh(Q) Ik is defined by the function which equals WH - ak on OFQk and 
vanishes on all interior nodes of Qk. Now 

(2.12) Ak(WW) < CakDk(WW), 

where &k is (for example) the smallest eigenvalue of the matrix {aj(x)}Nj=1 for 
some point x E Qk. It follows from (2.5), (2.11), and (2.12) that 

(2.13) Ak(WHWH) < Cakh-1 IWH - Cek aQkh- 
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To make the right-hand side of (2.13) correspond to an indefinite form, we choose 
ak to be the discrete mean value of WH on OFQk, i.e., 

-_(WHI 1)aQkh 
Cek=WH= (WB1) kh 

We replace A(WH, WH) with 

(2.14) Q(WH, WH) = h1 Zak IWH WHI1kh2 

k 

For more general A given by (1.3) with ak :A 0 we use 

Q(WHWH)= E Qk(WHWH) 

(2.15) _Eh1 {(ak +akh) WH -(WH)kIakh + akhd(WH)k}. 
k 

Finally, when A is given by (1.7) we use 

Q(WHWH)= E Qk(WHWH) 
k 

(2.16) h1 {(6ak + (bk + Eak)h) WH (VH)kIaQkh 
k 

+ (bk + Eak)hd(WH)k}- 

The constants bk and ak are defined as the average values of bk and ak over Qk. As 
before, it suffices to take ak to be the minimal eigenvalue of the matrix {ak (x)} 
for some point x E Qk. 

We have the following theorem. 

THEOREM 1. Let A be given by (1.3) or (1.7), respectively. Let B be defined 
on Sho(Q) x Sh (Q) by 

(2.17) B(W, W) _ A(Wp, Wp) + Q(WH, WH), 

where Q is given by (2.15) or (2.16) respectively. We then have 

(2.18) - B(W, W) < A(W, W) < CB(W, W) for all W E Sh? (Q), d 

with c and C independent of h and d. 

Proof. By (2.7), (2.8) and (2.10) it suffices to prove that 

(2.19) d Qk(VV) <Ak(T/:V)<CQk(VV) for all V E H(Qk). 

We shall first prove the theorem when A is given by (1.3) and ak = 0. In this case, 
(2.19) reduces to 

(2.20) d jV -VkIkh < Ak(Vi V) h Oa v-Vk<awh for all V e H(Qk). 

The second inequality is just (2.13). 
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To prove the first inequality, let Ak denote the mean value of V on Qk. By (2.3) 
and the definition of Vk, we have 

V-VkI O9k h < IV- /k akh ? C aV-IkI8k. 

Applying (2.2), (2.1) and (2.3) gives 

V -k 91Qkh < c(d' liv - A kIIk + dDk (V - kV -3k)) 

< CdDk (V - A , V - 3) = CdDk (V, V) v 

Then, by the ellipticity assumptions on the coefficients defining Ak and A, we have 

(2.21) ak | V- 1k 2kh < CdAk V, V). 

Thus we have shown that the theorem holds for the case ak = 0. 
We next prove the theorem for the remaining cases. When a :A 0 and A given by 

(1.3), we set bk = 0 and E = 1. Hence (2.16) defines Q in either case. We first prove 
the second inequality of (2.19). Let Vk denote the discrete Ak-harmonic extension 
of Vk. Note that in general, 1k is nonconstant even though 1k is constant on a9k 

Evidently, 

(2.22) Ak(VV) < 2(Ak(V -Vk, V -1k) + Ak (Vk, Vk k)) 

By the harmonicity of Vk, 

(2.23) Ak ('k, i k) < Ak(Vki Vk) < C(bk + Eak) ||Vk I 0 < C(bk + Eak)d Vk2 

By the harmonicity of V - Vk, 

(2.24) Ak (V-Vk, V-Vk) < Ak (W W), 

where W is the function which equals V - 1k on OFQk and vanishes on the in- 
terior nodes of Qk. The assumptions on the coefficients of the operator and the 
preconditioner and Lemma 2.1 give 

Ak(W, W) < c{(bk + Eak) IIWIIQk + 6&kDk(W, W)} 

(2.25) <0C { (j~ + (bk + Eak)h) V-Vk~ankh}. 

Combining (2.22) through (2.25) proves the second inequality of (2.19). 
We finally prove the first inequality of (2.19). Noting that (2.21) is also valid in 

the present case, it suffices to show that 

(2.26) h(bk+ ak){hIVIVkI h-dNV } < CdAk(VV) 

for all V E H(Ak). By the arithmetic-geometric mean inequality, 

(2.27) h jV- k 12kh < 2h(IV 1kh + IVk2i&h) 

Using (2.4), it follows trivially that 

(2.28) h IVIQkh ? CV k < + Ak(VV). 
k-(bk + Ek) 

Since d is larger than h, a straightforward computation using (A.3) gives 

h VkI0kh - dVkI9 kh ? 'Vk 



THE CONSTRUCTION OF PRECONDITIONERS FOR ELLIPTIC PROBLEMS. II 9 

Hence it remains to bound dNV k. By the definition of Vk and the Schwarz inequal- 
ity, 

dNV-2 < cdN(h/d)2N-2 V(Xi) 

< CdhN 1 V(x,)2 = Cd IVIk2h, 

where the sum over i is taken over the set of nodes xi on OF0k. Hence by (2.4), 

(2.29) dNVQ < Cd 2k 

Combining (2.28) and (2.29) proves (2.26) and hence completes the proof of the 
theorem. 0 

Remark 2.4. The coefficients c and C appearing in the theorem depend on the 
local (with respect to the subdomains) behavior of the operator and preconditioner. 
Accordingly, the preconditioner will work well even in situations where there are 
large jumps in the coefficients defining L as long as these jumps only occur across 
the subdomain boundaries. 

Remark 2.5. There is a fair amount of freedom in weighting the boundary form. 
For example, the Q form in the case a = 0 could have been defined by 

Q(WH, WH) = I/ Z ak WH- kh 
k 

Then the condition number for the preconditioned system would remain unchanged 
as long as h < -y < d. The forms (2.15) and (2.16) could be similarly weighted. 

3. The Solution of the Preconditioning Problem. In this section we 
describe an efficient algorithm for solving (1.8). In general, when B is of the form 
(2.17), we solve first for Wp, then for the values of WH on F, and finally extend 
WH to all of Q. 

We now give the details of a three-step algorithm for the solution of (1.8). As 
already mentioned, the problem of finding the solution W to (1.8) reduces to that 
of computing Wp and WH. The first step is to compute Wp. By taking 1) E Sh?(Qk) 
in (1.8) and using (2.9), we note that 

(3.1) Ak(WP, ') = (9, ') for all ' E Sh?(Qk). 

Equation (3.1) shows that Wp can be determined by solving independent discrete 
Dirichlet problems on the subregions. The second step involves the computation of 
the values of WH on F. These values are determined as the solution of the following 
problem: 

(3.2) Q(WH, 0) = (g, O)>-A(WP, 0) for all 0 E Sh(F). 

Here 0 denotes any extension of 0 in Sh?(Q) and we -note that by (3.1), the right- 
hand side of (3.2) is independent of the extension chosen. The development of an 
algorithm for solving (3.2) is an important part of this section and will be considered 
shortly. The third step is to compute the discrete Ak-harmonic extension of the 
boundary values of WH computed in the previous step. This is done as follows: Let 
WH be any extension of the boundary values of WH in Sho(Q), e.g., the extension 
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which is zero at all of the nodes not on F. Then WH = Y + WH, where Y vanishes 
on F and is the solution of 

(3.3) Ak(Y, A) = -Ak(WH, A)) for all J E Sho(Qk), 

for k = 1, ... , nd. Equation (3.3), as in (3.1), requires independent discrete Dirichlet 
solves on the subdomains. 

We now develop an algorithm for solving (3.2), that is, computing the values of 
WH on F. For notational convenience we set V = WHIr. Then (3.2) reduces to 

(3.4) h 1 E {f(E6k+h (bk+E ak) ) (V -kX)ak h+(bk+Eak )hdVkXk} = F(X) 
k 

for all X E Sh (F), where F is a known linear functional on Sh (F). We shall see that 
the problem of computing the solution V of (3.4) is straightforward if the values of 
Vk are known. Indeed, V satisfies 

(3.5) h 1E (eak + h2(bk + Eak)) (V, X)Xkh = ) 
k 

where the linear functional G in (3.5) depends upon F and the average values Vk. 
Note that if we use the usual nodal basis for functions in Sh (F), then the matrix 
corresponding to Problem (3.5) is diagonal and hence its solution can be trivially 
computed. Thus to solve (3.2), we need only demonstrate a technique for computing 
the average values Vk. 

We shall define another function V E Sh (F) which has the same average values 
as the solution V of (3.4). Obviously, the average values of V can then be computed 
by calculating the average values of V. Let Sho(F) denote the collection of functions 
in Sh (F) which have zero average value on every a9k. Clearly, (V - V) E Sh (F). 
To make the system of equations determining V of minimal size, we choose V in 
an orthogonal complement of So (F). Specifically, let Sh (F) be defined by 

S h-(F) _{ E Sh(F) I Q(O, w) = 0 for all w E Sho(F) 

and define V to be the unique function in Sh-f (F) satisfying 

(3.6) Q(V, 0) = F(O) for all 0 E Shj(F). 

Note that V is the orthogonal projection of V into Shf (F) and hence V has the same 
average values as V. In what follows, we shall derive a basis for Sh-f (F). This basis 
will consist of functions with local (with respect to d) support, and hence V can be 
computed as the solution to a sparse, positive definite and symmetric "stiffness" 
matrix corresponding to (3.6). The number of unknowns in this system will always 
be less than or equal to nd- 

Before proceeding, we shall introduce some additional notation. Let Vk 
h 1(E&k + h2 (bk + Ea k)) and define 

QO(W W) Vk IWWIakh. 
k 

Note that Q and Q0 only differ by terms involving the average values squared. 
Hence, 

(3.7) ShL(F) = {O E Sh(F) I Qo(O, w) = 0 for all w E Sh(F)}. 
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We will first define functions Ok E Sh(IF), for k = 1,..., rd. Consider a fixed 
subregion with boundary 9Qk. The function qk is defined to be zero on all of the 
nodes on F/OQk, its values on OFQk are to be determined. Let W be in Sh(F); then 

(3.8) QO(W, qk) = ( Xi) k(Xi) + E kjWj, 

i 3 

where 

(3.9) Yi=hNl S V 
{jl zEI qX nO9k } 

and 

(3.10) Kk,3= -h N V1 5 ik (Xl). 

X1 Eank nar, 

The sum over i in (3.8) is taken over the nodes xi on OFQk and the sum over j in 
(3.8) is taken over the subregions Qj with OQj nr Ok + 0. We define the nodal 
values of Ok on OFQk by 

(3.11) Ok (Xi) = -- 

With the above choice for bk, it is evident that the first sum in (3.8) equals VkNkWk, 
where Nk is defined to be the number of nodes on OFQk. Hence (3.8) becomes 

(3.12) Qo(W, bk) = VkNkWk + 5 tkjWi. 

By (3.7) and (3.12), Ok E Sh-(F). 
We will next show that 

(3.13) Sh (IF)= span Ok. 
k=1,...,nd 

It suffices to show that if 

(3.14) 0 E Sh (F) and Qo(O, qk) = 0 

for k = 1,...,nd , then 0 = 0. Consider the matrix M defined by the right-hand 
side of (3.12), i.e., 

Mij = 8ijviNi + tcij, 

where 6ij is the Kronecker Delta Function. Let 0 satisfy (3.14) and 0 be the vector 
with components Sk. Then by (3.12), (3.14) and the definition of M, 

(3.15) MO = 0. 

To show that (3.13) holds, it suffices to show that M is invertible. Indeed, if M is 
invertible, then (3.15) implies that 0 is also in ShO(F) i.e., 0 = 0. 

We will see that M is symmetric and positive definite and hence invertible. 
Indeed, the quantity -y, in (3.9) depends upon the point xi but not the subregion 
Qk. Consequently, Kj,k = Kk,j, i.e., M is symmetric. Furthermore, this system is 
sparse with positive diagonal entries and nonpositive off-diagonal entries. Also, 

E 1k,j = -NkVk, 

3. 
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where Nk is defined to be the number of nodes on a6k which do not lie on AQ. 
Consequently, the matrix M is irreducibly diagonally dominant and hence positive 
definite; cf. [9]. 

In general, the functions qi1, ... , fin may not be linearly independent. For exam- 
ple, in the case of the unit square with the checkerboard subdivision, the function 

Z kk- E 1 = O. 
red squares black squares 

In this case it is easy to check that {eb, ... fid_-l } is linearly independent and hence 
forms a basis for S I (F). Bases for more complicated domains and subdivisions are 
also straightforward to derive. 

For completeness, we restate the algorithm developed in this section for comput- 
ing the solution W of (1.8). 

Algorithm DD2. 

(1) Compute Wp by solving (3.1). This involves Dirichlet solves on the subdo- 
mains which can be done independently and in parallel. 

(2) Compute the values of WH on F. First we compute the function V by solving 
(3.6) using the finite element basis {q4} described above. The average values 
of V are computed by calculating the average values of V. The values of 
WH on F are then computed by solving the trivial equation (3.5). 

(3) Extend the boundary values of WH by solving (3.3). As in Step 1, this 
involves Dirichlet solves on the subdomains which can be done independently 
and/or in parallel. 

(4) Set W = Wp + WH. 

Remark 3.1. When bk = ak = 0, the matrix M can be directly used to compute 
the average values of V. Indeed, if V denotes the vector of average values of V, 
then by (3.12) and the definition of M, 

(3.16) Q(V, 'k) = (MV)k = F(qk), 

and hence the average values of V are given by 

'F(01) 

V = M-1 . . 

F(fnd)} 

Remark 3.2. The method for computing the average values of V described in 
Remark 3.1 may not work well when either bk or 4k are nonzero. In the general 
case, a matrix M satisfying (3.16) can be derived using similar techniques. In such 
cases, M may no longer be symmetric or diagonally dominant. Consequently, it 
may be difficult to obtain good numerical solutions for (3.16) when low-order terms 
are present. Note, however, that the algorithm described earlier for computing 
the average values by solving (3.6) always leads to numerically stable, sparse and 
symmetric positive definite systems. 

4. Numerical Experiments. In this section we shall present some results 
of numerical experiments which illustrate the convergence properties of the pre- 
conditioned conjugate gradient algorithm using DD2 as a preconditioner. Two- 
dimensional examples where L is given by (1.2) will be considered first. These 
examples are taken from [3], so that a direct comparison between the precondi- 
tioners DD1 and DD2 can be made. Next, two-dimensional singularly perturbed 
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problems of the form (1.5), (1.7) will be studied. Finally, a model three-dimensional 
problem will be considered. 

To avoid making this section too I-3ng, we shall not attempt to illustrate the full 
power and flexibility of the algorithm. Accordingly, other numerical examples on 
which we have tested the algorithm will not be included. These examples include 
applications to problems with discontinuous coefficients, problems with smoothly 
varying coefficients, and problems on domains with irregular geometry (see Exam- 
ples 2, 3, 4, and 5 of Part I). 

We shall define a number of parameters which will be introduced to study the 
convergence properties of the proposed preconditioning algorithm. The condition 
number of the preconditioned system is denoted by K. The integer n is defined to 
be the number of iterations required to reduce the A-norm (defined by A(., .)1/2) 

of the error En = U - Un by a factor of .0001. Here, U is a randomly generated 
solution of (1.5), normalized so that -1 < U < 1, and Un is the approximation 
to U obtained using n steps of a conjugate gradient algorithm preconditioned by 
DD2. It is well known that the A-norm of the iteration error satisfies the bound 

A(Ej,Ej) < 4p2iA(Eo, Eo), 

where 

(4.1) p = -I 

We shall sometimes compare p with the average observed reduction po defined by 

Po = (A(En: En) 1/2n 

=? tA(Eo5Eo) 

Example 1. The first set of numerical experiments is applied to the standard 
model problem given by 

(4.2) Lu=f on Q and u = 0 on O9, 

where L is taken to be the Laplace operator -i and Q is the unit square. There 
are many techniques available for solving this problem. However, this problem is 
interesting in that it illustrates many of the convergence properties of the proposed 
preconditioner. The square is partitioned into m2 equal subsquares and hence 
d= 1/m. 

The first table gives some indication of a typical run on an iteration-by-iteration 
basis. Here we break the square into sixteen subsquares and hence d = 1/4 and 
set h = 1/32. Table 4.1 gives the normalized error reduction as a function of the 
number of preconditioned steps in the A-norm and the maximum norm. Note that 
it takes 14 iterations to reduce the A-norm error by .0001. For this example, the 
average error reduction over 14 steps in the A-norm (resp. maximum norm) was 
.52 (resp. .60). 
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TABLE 4.1 
Step by Step Iterative Convergence for Example 1. 

Iteration A-error Max-error 

1 8.0 x 10-1 1.0 
2 4.0 x 10-1 1.4 
3 1.4 x 10-1 6.7 x 10-1 
4 5.7 x 10-2 3.5 x 10-1 
5 2.3 x 10-2 1.7 x 10-1 
6 1.1 X 10-2 9.5 x 10-2 
7 5.4 x 10-3 4.5 x 10-2 

8 2.3 x 10-3 3.5 x 10-2 

9 1.8 x 10-3 2.6 x 10-2 

10 1.2 x 10-3 1.5 x 10-2 

11 6.8 x 10-4 6.9 x 10-3 

12 3.5 x 10-4 2.9 x 10-3 

13 1.9 X 10-4 1.6 X 10-3 

14 9.3 x i0-5 7.7 x 10-4 

The next two tables show that, in practice, the condition number of the precon- 
ditioned systems exhibit the growth rates predicted by the theory. In Table 4.2, 
we fix d = 1/4 and vary h. As predicted by Theorem 1, K grows like d/h. For 
Table 4.3, we fix d/h = 4 and vary h. In this case, the condition number for the 
precondition system remains bounded independent of h. Tables 4.2 and 4.3 also 
give the observed average reduction po and n, the number of iterations required to 
reduce the A-norm error by a factor of .0001. The number of subregions m is also 
included in Table 4.3. 

TABLE 4.2 
Iterative Convergence Results for Example 1 when d = 1/4. 

h K 15d Po n 

1/8 3.4 3.8 .21 7 
1/16 7.2 7.5 .39 10 
1/32 14 15 .52 14 
1/64 30 30 .60 19 

1/128 61 60 .68 24 

TABLE 4.3 
Iterative Convergence Results for Example 1 when d/h = 4. 

h K Po n m 

1/8 6.6 .20 6 4 
1/16 7.2 .40 10 16 
1/32 7.5 .42 11 64 
1/64 7.6 .42 11 256 

Example 2. The next example illustrates the algorithm applied to singularly 
perturbed problems. We again consider the unit square with the same subdomain 
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subdivisions as in Example 1. For this problem, the form A is given by 

(4.3) A(v, 0) = ED(v, q) + (v, qA). 

Table 4.4 gives iterative convergence results when h = 1/32, d = 1/4, E = hP, and 
p varies between 0 and 2. This range of E is typically that which occurs when time- 
stepping procedures are applied to parabolic problems and E is essentially the size 
of the time step. Table 4.4 shows that the condition numbers for the preconditioned 
systems, as p varies, remain bounded by the condition number corresponding to 
the case p = 0. Similar results were obtained when h and d were varied. 

TABLE 4.4 
Iterative Convergence Results for Example 2 as p Varies. 

p K Po n 

o 15.1 .51 14 
0.5 14.7 .51 14 
1.0 12.4 .49 14 
1.5 9.7 .45 12 
2 6.6 .33 9 

Example 3. For our final example we consider a model three-dimensional prob- 
lem. Here we set Q to be the unit cube and define the subregions by breaking Q 
into 27 subcubes of equal size. We let L be an elliptic operator of the form 

(4.4) Lu =-V ,uVu in Q, 

where ,u is a piecewise constant function on Q and constant on the subdomains. 
Figure 4.1 gives the values of pu as a function of the x, y, z coordinates of the center 
of the subregions. These values were chosen to exhibit relatively large jumps across 
subregions, but are otherwise arbitrary. Table 4.5 gives iterative convergence re- 
sults for the conjugate gradient method preconditioned by DD2 applied to the finite 
element equations corresponding to (4.4). Note that even though the coefficients 
of the operator have large jumps, the condition number K of the preconditioned 
system remains relatively small. In fact, the results reported do not differ signifi- 
cantly from results (not presented) for the case p _=1. This is in agreement with 
Remark 2.4. 

t=3 Fa=l FL=10 =z8 FL=3 a=l pL=883 LL=3 pL=33 

Y ,L= I /O =0.1 IO =10 Y IF=889 L=22 FL=03. Y W =9 IL=8.*8 F=2 

[,L=OO00 y=l HL1 1L=47 Ly=10 l=0.88l kL=101 1L=3 1L=551 

X X X 

0< Z <1/3 1/3<Z<2/3 2/3<Z<I 

FIGURE 4.1 
Coefficients for Example 3. 
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TABLE 4.5 
Iterative Convergence Results for Example 3. 

h K Po n 

1/6 6.8 .39 11 
1/12 17.4 .55 16 

1/24 38 .64 21 
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